1732=16t^2

Simple and best practice solution for 1732=16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1732=16t^2 equation:



1732=16t^2
We move all terms to the left:
1732-(16t^2)=0
a = -16; b = 0; c = +1732;
Δ = b2-4ac
Δ = 02-4·(-16)·1732
Δ = 110848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{110848}=\sqrt{256*433}=\sqrt{256}*\sqrt{433}=16\sqrt{433}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{433}}{2*-16}=\frac{0-16\sqrt{433}}{-32} =-\frac{16\sqrt{433}}{-32} =-\frac{\sqrt{433}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{433}}{2*-16}=\frac{0+16\sqrt{433}}{-32} =\frac{16\sqrt{433}}{-32} =\frac{\sqrt{433}}{-2} $

See similar equations:

| -2/5x=30+3/5x+20 | | (x+11)^2=19 | | -5=n+5=2 | | X-5+20x=12x-3+9x | | 8-t=1= | | 2x-1(x+1)=252 | | 5y-3=32= | | y=-23/4 | | 4(2m+3)-3(m-3)=5(m+3) | | 7x−(4x+4)=4x−11 | | 1/2(8x-4)=3x-7 | | 30-(x-7)=6x-5 | | 7/2=42/x | | 43=3x+4 | | x2+2x−35=0 | | 2x-39=129 | | 4m=2m+80 | | -5.1-4x=-7.4-3.4x | | 8m=2m+60 | | 42n=7/42 | | 5/m+4-2m+4/m^2+4m=-6/m | | 1,25=0.75+r | | 3w^+w=2 | | X+x-54=66 | | Y=2x^2+6×-1 | | 4(5x-3x)=14+2(5-2x) | | 2(x^2)=126^2 | | 4(2+2x)=-3(x-5x) | | 2x^2=126^2 | | (2x)^2=126^2 | | 10+3/n=n-6 | | -7x-21=28 |

Equations solver categories